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Abstract: The aim of this paper is to estimate the parameter precision values in nonlinear 
regression using Microsoft Excel. In case of simple linear regression, these values can be 
obtained from regression analysis in Excel. Commercially available programs output these 
values, but the main limitation is that they force the users to adopt a black box approach. The 
procedure described here can be adopted to any nonlinear dataset assuming that parameters 
obtained from solver accurately describe the nonlinear regression model. For one of the 
nonlinear datasets from NIST Statistical reference datasets, the parameters are initially 
estimated by using Solver and then by using Finite differences method parameter precision 
values are calculated. The results obtained were found to be comparable with the reported 
values. 
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1. Introduction

Regression analysis deals with the 
relationship between one or more inde-
pendent variables and a dependent variable. 
Regression analysis is performed by selecting 
a suitable function which accurately de-
scribes the relationship between the two and 
estimator to calculate the parameter values. 
These regression parameters are calculated 
by least squares method. In linear regression 
[1], either the parameters are linear or the 
function describing the model is linear. 
Nonlinear regression methods are applied 
when the relationship between dependent and 

independent variables in is not linear. 
Nonlinear regression relies on iterative pro-
cedure to find the best fit. The process [2] 
starts with initial values for each parameter, 
and then by using least squares fitting, the 
best fit parameter values which minimizes 
the sum of squared residuals are estimated. 
Microsoft Excel Solver Add-in estimates 
parameters for nonlinear regression by least 
squares method, but it doesn't estimate their 
precision. The paper aims to use finite dif- 
ference method to estimate these values. 
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2. Nonlinear Regression

A model is considered to be nonlinear if any 
of the partial derivatives with respect to any 
of the model parameters are dependent on 
any other model parameters, any of the 

derivatives do not exit or are discontinuous. 
A nonlinear model can be expressed as 
(equation 1):

𝑦𝑦 = 𝑓𝑓(𝜃𝜃; 𝑡𝑡) +  𝜖𝜖 (1) 

where y is the vector of responses, f is the 
function used to describe the model, θ is 
vector of model parameters, t is the predictor 
variable and ε is the vector of residuals [3]. 

Rat43 dataset from National Institute of 
Standards and Technology (NIST) website 

[4], was selected to estimate the parameter 
precision by finite difference method. This 
dataset was selected, as the data can be fitted 
by using nonlinear regression method and is 
included in the higher level of difficulty 
group. 

𝑦𝑦 =  
β1

(�1 +  e� β2−+β3∗𝑡𝑡��
�1 β4
� �

)
(2) 

The nonlinear regression model described by 
equation 2 was used to fit the data, where 
response variable (y) is the dry weight of 
onion bulbs, whereas predictor variable (t) is 

growing time [4]. The model parameters 
were estimated by using both starting values 
and the results are given in Table 1. 

Table 1. Rat43 Dataset Values 

t (growing 
time) 

y (onion bulb 
dry weight) 

1 16.08 
2 33.83 
3 65.80 
4 97.20 
5 191.55 
6 326.20 
7 386.87 
8 520.53 
9 590.03 
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10 651.92 
11 724.93 
12 699.56 
13 689.96 
14 637.56 
15 717.41 

Solver Implementation to Estimate Parameter Values (Table 2) 

a) Data is entered in Excel, growing time (t)
in column A and onion bulb dry weight (y) in
column B.
b) Initial values for β1, β2, β3 and β4 given in
NIST website were used [4].
c) By substituting different values of t, initial
values of β1, β2, β3 and β4 in equation (2)
different calculated y values were obtained.
d) Sum of squared errors (SSE) was obtained
by adding the squared differences between y
and y calculated value. SUMXMY2 function
in Microsoft Excel was used to calculate the
SSE value. In the parameters worksheet, cells
B2 to B16 contains y values, cells C2 to C16

contains y calculated values which were 
obtained by using start 1 initial estimates. 
SSE value was obtained by using the formula 
“SUMXMY2 (C2:C16, B2:B16)”.  
e) Best fitted parameter values were obtained
by minimizing the SSE value using
generalized reduced gradient (GRG)
nonlinear method.
f) The process was also repeated by using
second set of start values as given in the NIST
website [4].
g) Results obtained from both start values
were in agreement with the reported values
[4].

Table 2. Model Parameter Results Obtained After Least Square Fitting Using Excel Solver 

3. Finite Difference Method

For a function with two or more independent 
variables, the partial derivative of that func-
tion with respect to a particular variable is the 
derivative of that function with respect to that 
variable, while holding the other variables 
constant [5]. The partial derivative term of 
each data point can by calculated by numer-

ical differentiation. The parameter term (β1) 
is varied by a small amount from its 
optimized value while the other parameters 
terms are held constant. This variation of a 
parameter by a small amount is called 
perturbation. The partial derivatives are 
calculated by using the formula in Equation 7 

Parameter Start 
1 Values obtained Start 2 Values obtained Certified values 

β1 100 699.6415127 700 699.6415126 699.6415127000 
β2 10 5.27712531 5 5.277125383 5.2771253025 
β3 1 0.759629383 0.75 0.759629391 0.75962938329 
β4 1 1.279248389 1.3 1.279248414 1.2792483859 
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[6] for all data points. Then the process is
repeated for all the parameter terms in the
model [6]. The Jacobian matrix (J) is
constructed from all these partial derivative

terms and is given by the following equation 
(3) [7], where m is the number of nonlinear
parameters.

J =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡�
𝜕𝜕𝑦𝑦1
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(3) 

The parameter precision can be estimated 
from the matrix of partial derivatives (E), 
which is obtained by multiplying transpose of 

J with itself (E = JT * J) [7] and is given in 
equation 4. 

E =
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(4) 

The square roots of the diagonal elements of 
the above E matrix inverse when multiplied 
by root residual standard deviation (RSD) 
yields the precision for the respective param-
eter (equations 5 and 6) [7], where SSE value 

was obtained from solver implementation 
and df is the degrees of freedom (difference 
between number of observation and number 
of parameters in the model). 

β𝑖𝑖,precision = RSD ∗ �E−1𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, 2, 3, … m (5) 

RSD = �SSE
df

(6) 
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The individual partial derivatives for the J 
matrix can be calculated from the following 
equations (7) [7], where δ (perturbation) can 

be 10-6 or 10-7 [7]. The above calculations are 
performed in Microsoft Excel to obtain the 
parameter precision values for all the 
parameters. 

�
∂𝑦𝑦𝑖𝑖
∂β1

�
β2,…β4,𝑡𝑡𝑖𝑖

≈  
𝑦𝑦�β1(1 + δ),β2, β3,β4, 𝑡𝑡𝑖𝑖� − 𝑦𝑦[β1,β2,β3,, β4, 𝑡𝑡𝑖𝑖]

β1(1 + δ) − β1

�
∂𝑦𝑦𝑖𝑖
∂β2

�
β1,β3,β4,𝑡𝑡𝑖𝑖

≈  
𝑦𝑦�β1,β2(1 + δ),β3,β4, 𝑡𝑡𝑖𝑖� − 𝑦𝑦[β1,β2,β3,, β4, 𝑡𝑡𝑖𝑖]

β2(1 + δ) − β2

�
∂𝑦𝑦𝑖𝑖
∂β3

�
β1,β2,β4,𝑡𝑡𝑖𝑖

≈  
𝑦𝑦�β1,β2,β3(1 + δ),β4, 𝑡𝑡𝑖𝑖� − 𝑦𝑦[β1,β2, β3,,β4, 𝑡𝑡𝑖𝑖]

β3(1 + δ) − β3

�
∂𝑦𝑦𝑖𝑖
∂β4

�
β1,β2,β3,𝑡𝑡𝑖𝑖

≈  
𝑦𝑦�β1,β2,β3,β4(1 + δ), 𝑡𝑡𝑖𝑖� − 𝑦𝑦[β1,β2, β3,,β4, 𝑡𝑡𝑖𝑖]

β4(1 + δ) − β4

(7) 
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4. Results and Discussion

The partial derivative calculations for the 
first parameter using parameter values 
obtained from Start 1 values are shown in 
Figure 1. Values in Column A9 to B23 
corresponds to the raw data, values in C9 to 
C23 correspond to calculated values obtained 
after solver optimization. For values in D9 to 

D23, to the first parameter (β1) δ (10-6) was 
added and then its corresponding y 
(independent variable) values are calculated. 
The values in E9 to E23 are calculated as per 
equation 7. The calculations are repeated for 
all the parameters to obtain the partial 
derivative matrix (J), as given in equation 3. 

Figure 1. Excel Sheet Showing Partial Derivative Calculation One Parameter (β1) 

Click here to view/download complete Excel file

or click here go to Appendix
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The Jacobian matrix in cells N9 to N23 are 
obtained by pasting the values of E9 to E23 
for first parameter. The values O9 to Q23 in 

the matrix are obtained similarly from the 
other three parameters, and the resulting 
matrix is shown in Figure 2.

Figure 2. Jacobian Matrix 

The result in Figure 3 is obtained by taking 
inverse of matrix E. The first parameter 
precision is obtained by multiplying the 

square root of value in N28 and RSD value 
(equation 8) [7]. 

Figure 3. Inverse of Matrix E 
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RSD =  �
8786.404908

(15 − 4) =  28.26241466 

β 1,precision = RSD ∗  √N28 cell value 
β 2,precision = RSD ∗  √O 29 cell value 
β 3,precision = RSD ∗  √P 30 cell value 
β 4,precision = RSD ∗  �Q 31 cell value 

(8) 

The results obtained were comparable with 
the reported values [4] and are given in Table 
3. 

Table 3. Comparison Standard Deviation of Parameter Estimate Values 

Parameter Values obtained Reported values 
β1 16.3023271498 16.3022978170 
β2 2.0829153607 2.0828735829 
β3 0.19566584176 0.19566123451 
β4 0.68762926694 0.68761936385 

5. Conclusions

The parameter precision results obtained 
from the finite difference method were 
comparable to the reported values. Finite 
difference method offers a convenient 
approach to estimate nonlinear regression 
parameter precision values. Even though the 
method is robust in calculating precision 
values, limitations due to solver, like lack of 

convergence during optimization or para-
meter values inaccurately describing the 
model, can be encountered. For example, in 
the case of MGH10 dataset (which is 
available in the NIST website), the parameter 
values obtained after solver optimization are 
incorrect, which in turn leads to inaccurate 
parameter precision values.
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